基于集成学习的天府机场强对流潜势预报模型

Severe Convection Potential Prediction for Tianfu International Airport Based on Ensemble Learning

  • 摘要: 本文选取2016—2020年5—9月四川省气象局雷达反射率数据和2021—2024年5—9月天府机场雷达反射率数据,结合同期ERA5再分析资料,采用LASSO算法进行物理量筛选,通过检验评估多种集成算法的建模结果,构建了天府机场强对流潜势预报模型。结果表明:LightGBM算法建立的模型F2评分最高,达到0.417;海平面气压、925 hPa露点散度、700 hPa经向风、500 hPa涡度、CAPE值是影响模型性能的重要物理量;各物理量在强对流时段的平均值与夏季(5—9月)平均值存在显著差异,能反映天府机场的强对流天气特征,具有一定的统计意义;该模型的构建为物理量筛选提供了思路,在气象预报中具有一定的运用前景。

     

    Abstract: Using radar reflectivity data from Sichuan Provincial Meteorological Service (2016—2020, May—September) and Tianfu International Airport radar reflectivity data (2021—2024, May—September), combined with concurrent ERA5 reanalysis data. The LASSO algorithm was employed for physical parameter screening. By evaluating the modeling results of various ensemble algorithms, a severe convection potential forecast model for Tianfu Airport was constructed. The results indicate that the model established using the LightGBM algorithm achieved the highest F2 score of 0.417. Key physical parameters influencing model performance include sea level pressure, 925 hPa dewpoint divergence, 700 hPa meridional wind, 500 hPa vorticity, and CAPE value. The average values of these parameters during severe convection events show significant differences compared to their averages over the summer months (May—September), reflecting the characteristics of severe convection weather at Tianfu International Airport and holding statistical significance. The construction of this model provides a methodological approach for physical parameter screening and demonstrates potential application prospects in meteorological forecasting.

     

/

返回文章
返回