数值模式在遂宁区域暴雨过程中的检验评估

Inspection and Evaluation of Numerical Model in Rainstorm Process in Suining

  • 摘要: 利用ECMWF细网格、GRAPES_GFS、GRAPES_MESO、SWC_WARM四种数值模式降水资料,以及四川省气象台智能网格格点降水预报产品,对遂宁地区2020年7月发生的六次区域性暴雨天气过程进行了24h时效检验分析。结果表明:四种数值预报模式对遂宁地区的降水预报均有较大偏差,预报值普遍偏小1~2个量级;SWC_WARM针对暖区暴雨的落区预报具有较好的指示意义;在锋面降水过程中,ECMWF细网格模式的参考价值更大;而GRAPES_GFS和GRAPES_MESO的偏差最大,对暴雨的指示性较差;四川省气象台的智能网格降水预报产品对暴雨预报有一定的指导作用,但还需要本地预报员对落区和量级进行进一步订正。

     

    Abstract: Using the four numerical model precipitation data of ECMWF fine grid, GRAPES _ GFS, GRAPES _ MESO, SWC _ WARM, as well as intelligent grid precipitation forecast products of Sichuan Meteorological Observatory, six regional rainstorm weather processes in Suining in July 2020 were analyzed. The results show that the four numerical prediction models have large deviations in the precipitation forecast of Suining, and the forecast values are generally less than 1 ~ 2 orders of magnitude. SWC _ WARM has good indicative significance for the forecast of falling area of warm area rainstorm. In the frontal precipitation process, ECMWF fine grid model has a greater reference value. The deviation of GRAPES _ GFS and GRAPES _ MESO is the largest, and the indication of rainstorm is poor. The intelligent grid precipitation forecast products of Sichuan Meteorological Observatory have a certain guiding role for rainstorm forecast, but the local forecasters need to further correct the falling area and magnitude.

     

/

返回文章
返回